

Cookstove Performance & Emissions

By: James Babers, Mohammed Alnaseem, Fahad Alboaijan, Ibrahim Yousef, And Rawan Farman

EGR 486C Students, Fall 2016

Instructor: Professor Dianne McDonnell

December 3rd , 2016

BACKGROUND

00000000

[1]

TWO STOVES

Three stones stove[2]

Jiko Stove [3]

TWO FUELS WOOD CHARCOAL **Enclosed** Container Low Oxygen Exothermic Hard Wood (Maple) **Higher Energy** More heat

THE PLAN

Predictions

Environmental Engineers

> Particulate Matter (PM) Testing & Analysis

Performance Testing & Analysis

HEAT TRANSFER

- $Q_{Delivered} = Q_{conv,total} + Q_{rad,total} + Q_{cond,total}$ CONVECTION
- $Q_{conv} = h * Area * (Temp_{hot} Temp_{cold})$ RADIATION
- $Q_{radiation} = \varepsilon * \sigma * Area * (Temp_{hot}^4 Temp_{cold}^4)$ CONDUCTION

•
$$Q_{Conduction} = \frac{k*Area*(Temp_{hot}-Temp_{cold})}{Length}$$

	Efficiency			
fuel type	jiko	3- stone		
wood	21%	10%		
charcoal	25%	12%		

	Power (w)			
fuel type	jiko 3- stone			
wood	750	360		
charcoal	460	220		

TESTING MATERIALS

Materials used are:

- Maple Wood
- Thermometer
- Steel Bin
- Aluminum Foil
- Scale
- Lighting fluid
- Lighter
- Water
- Pot
- Stop watch

*By U.S. Environmental Protection Agency, Partnership for Clean Indoor Air (PCIA), with updates coordinated by PCIA and the Global Alliance for Clean Cook stoves (Alliance).

TESTING DATA ANALYSIS

• Efficiency
$$\eta_{th} = \frac{Q_{Delivered}}{Q_{Fuel}} Eq. 1$$

•
$$Q_{Delivered} = \Delta E_{H20} + \Delta E_{vap} + \Delta E_{Lf} \quad Eq. 2$$

Maple				Charcoal		
Weight dry cord,Maple	Weight dry cord,Maple	Recoverable heat value (dry wood)	Recoverable heat value (dry wood)	Recoverable heat value (dry wood)	Recoverable heat value (dry wood)	Recoverable heat value
(lb/cord)	(kg/cord)	(millions Btu/cord)	Mj/cord	Mj/kg	j/g	j/g
3655	1658	22	22789	14	13747	25700

•
$$\Delta E_{H20} = c_{H20} * (T_{final} - T_{initial}) * Mass_{H20} Eq.3$$

•
$$Q_{Fuel} = Mass_{Fuel} * HeatingValue_{Fuel} Eq.4$$

•
$$Power = \frac{Q_{delivered}}{time} Eq.5$$

RESULTS 10 EFFICIENCY AND POWER

- Wood produced more power than charcoal.
- Charcoal was more efficient in the Jiko.
- The Jiko was more efficient and produced more power than the 3-stone.

FLAGSTAFF VS. PHOENIX

WHAT IS PARTICULATE MATTER?

- The sum of all solid and liquid particles suspended in air many of which are hazardous
- Organic and inorganic
- Dust and smoke

[7]

WHY IT IS HARMFUL?

WHAT IS PARTICULATE COUNTER?

In General

- Used in detecting and sizing physical particles emitted.
- Used in counting the particles emitted.

Met One Instrument Model 212

- Laser diode based optical sensor.
- Uses light scatter technology.
- Measure 0.3 μ m to 10 μ m (eight selectable sizes).

PM TESTING METHOD

Set up the device 2 feet from the emissions source

Attach it to the computer

Start recording the data from the device profiler software

Analyze the data in a spreadsheet

[11]

PM EMISSIONS RATE

3-stones stove with charcoal & wood

PM TESTING RESULTS

Wood

Charcoal

- Wood produced significant amounts of PM <= 2.5 microns
- Charcoal produced far less PM <=2.5 microns
- The Jiko with charcoal produced the fewest emissions of any combination

PM TESTNG RESULTS

PM <2.5 emitted to boil 3 liters, jiko and 3 stone

• Jiko with charcoal produces fewest PM<=2.5 to boil 3 liters of water.

EFFICIENCY AND PM RESULTS							
EFFICIENCY		EMISSIONS					
FUEL TYPE	Jiko	3-Stones		WOOD		CHARCOAL	
WOOD	23.9%	12.4%	PM SIZES (microns)	Jiko	3-Stones	Jiko	3-Stones
	20.3%	8.2%	PM<=2.5	1546	1790	151	186
CHARCOAL	28.3%	8.9%	10.3				
	24.8%	9.0%	PM<=10 *10^3	1.02	1.98	1.2	1.12

RECOMMENDATIONS

Next Stove Capstone Group

- Mechanical Engineering Students
- I. More Cookstoves
- II. Proper scale
- III. More testing trials
- IV. Isolated facility
- V. Continual feed testing VI.Simmer testing VII.Animal waste testing

Women in Rural Areas of Africa

- The Best Option in Terms of Efficiency:
 ✓ Jiko with charcoal
- The Best Option in Terms of Power:
- \checkmark Jiko with wood

RECOMMENDATIONS

Next Stove Capstone Group

- Environmental Engineering Students
- I. Carbon Monoxide (CO)
- II. Carbon Dioxide (CO2)
- III. Nitrogen Oxides (NOx)

Women in Rural Areas of Africa

- The Best Option in Terms of PM Emissions:
- \checkmark Jiko with charcoal

ACKNOWLEDGEMENTS

Dr. Fethiye Ozis

Dr. Sagnik Mazumdar

Dr. Terry Baxter

Instructor Gary Slim

REFERENCES²⁴

- [1] R. Muthiah, clean cookstove drive gender quality. 2015.
- [2]"Well-Tended Fires Outperform Modern Cooking Stoves", LOW-TECH MAGAZINE, 2016. [Online]. Available: http://www.lowtechmagazine.com/2014/06/thermal-efficiency-cooking-stoves.html. [Accessed: 01- Dec- 2016].
- [3]"KENYA: Energy saving stoves to save forest cover", Charcoalproject.org, 2016. [Online]. Available: http://www.charcoalproject.org/2010/07/kenya-energy-saving-stoves-to-save-forest-cover. [Accessed: 01- Dec- 2016].
- [4]F. Incropera, Fundamentals of heat and mass transfer, 7th ed. Hoboken, NJ: John Wiley, 2011.
- [5] M. Johnson, T. Bond, C. Roden, N. MacCarty, et al, "The Water Boiling Test: Cookstove Emissions and Efficiency in a Controlled Laboratory Setting", Standards and Testing, Vol 4.3, no. 2, pp 1-89, 2014
- [6] "Wood Combustion Heat Values," Engineering Tool Box. [Online]. Available: http://www.engineeringtoolbox.com/wood-combustion-heat-d_372.html. [Accessed: 01-Dec-2016].
- [7]"Atmospheric particulate matter "GreenTnT, 2016. [Online]. Available: http://greentnt.org/pm. [Accessed: 02- Dec-2016].
- [8]P. Air, "Particulate matter Partners for Clean Air", *Cleantheair.org*, 2016. [Online]. Available: http://www.cleantheair.org/air-quality-information/particulate-matter. [Accessed: 02- Dec- 2016].
- [9]"Everything You Need to Know About Airborne Particulate Matter", Alencorp, 2016. [Online]. Available: https://www.alencorp.com/pages/everything-you-need-to-know-about-airborne-particulate-matter. [Accessed: 02-Dec- 2016].
- [10]"Met One Instruments Particle Counter Weather Station Equipment" Aikencolon, 2016. [Online]. Available: http://www.aikencolon.com/met-one-instruments. [Accessed: 11- Oct- 2016].
- [11] "Wood Species Moisture Content and Weight," Engineering Tool Box, 2016. [Online]. Available: http://www.engineeringtoolbox.com/weigt-wood-d_821.html. [Accessed: 01-Dec-2016].

